COMPREHENSIVE PROPOSAL FOR GEODYN SOLUTIONS: ## 1000 MW GEOTHERMAL POWER PLANT IN THE UNITED STATES © 2025 Geodyn Solutions. All rights reserved. This document is confidential and proprietary. Unauthorized use, reproduction, or distribution is prohibited without written permission from Geodyn Solutions. As an expert consultant in renewable energy, this proposal outlines a 1000 MW enhanced geothermal system (EGS) power plant in the U.S., leveraging the nation's leadership in geothermal energy (over 4 GW installed) and vast potential (up to 5.5 TW via EGS). The U.S. market emphasizes private investment, federal tax credits, and state incentives, with no reliance on international funding. The proposal incorporates a 20% contingency fee to address risks like drilling uncertainties or regulatory delays, optimizing for high-resource Western states to maximize ROI. It aligns with U.S. net-zero emissions goals by 2050, displacing coal and gas (60% of electricity). ### **PROJECT BACKGROUND** U.S. geothermal resources are concentrated in Western states along tectonic boundaries, with EGS enabling broader deployment. Current capacity is ~4 GW, primarily in California and Nevada, with DOE targeting 1-2 GW additions by decade's end to meet electrification and data center demands. This 1000 MW plant will provide baseload power to grids like CAISO or WECC, enhancing energy security for 330+ million people. ### FINANCIAL VIABILITY #### **PROJECT COST** Base cost is \$4.5 billion (~\$4.5 million/MW for EGS, per 2025 projections). A 20% contingency fee for risks like drilling or permitting brings total CAPEX to \$5.4 billion, aligning with industry standards (10-20%). | CATEGORY | DETAILS | |-----------------------------------|---| | Capital Expenditure (CAPEX) | \$5.4 billion (including 20% contingency on \$4.5 billion) | | – Base Cost | \$4.5 billion (\$4.5 million/MW for 1000 MW) | | Contingency Fee | \$0.9 billion (20% of base cost) | | Drilling Costs | 30–60% of base CAPEX (\$1.35–\$2.7 billion) | | Infrastructure Costs | 10–15% of base CAPEX (\$450–\$675 million) | | Operation & Maintenance (O&M) | \$0.02/kWh, ~\$4.73 billion over 30 years (7.884 billion
kWh/year) | - Drilling Costs: Major expense, mitigated by oil/gas tech advancements. - Infrastructure Costs: Includes roads, grid connections. - O&M Costs: Low at \$0.02/kWh, ~\$158 million/year at 90% capacity factor. ## ROI ANALYSIS (30-YEAR PROJECTION) | PARAMETER | VALUE | NOTES | |--------------------------|-----------------------------------|---| | ROI (30 years) | 115–135% | Optimized by location & incentives | | PPA Price | \$79/MWh)* | Based on recent U.S. projects | | Annual Production | 7.884B kWh | 90% capacity factor | | Annual Revenue | \$630.72M | | | Total Revenue (30 years) | \$18.92B | | | Total Costs | ~\$9.23B | Post-30% ITC CAPEX
\$3.78B + O&M \$4.73B | | Net Profit | ~\$9.69B | | | ROI Formula | (Net Profit / Total Costs) × 100% | ≈ 115–135% | | | | | #### **Highlight:** This projection shows strong long-term profitability, with net profits nearly doubling total costs and ROI reaching 115–135% in high-resource states where incentives and favorable PPA terms apply. ### **PAYBACK PERIOD** | METRIC | VALUE | NOTES | |-------------------------------|-----------------------|--| | Estimated Payback Pe-
riod | 7–9 years | National average: ~8 years;
High-ROI states: ~7 years | | Annual Revenue | \$630.72M | Based on 7.884B kWh ×
\$0.08/kWh | | Annual O&M Costs | \$158M | Operations & Maintenance | | Annual Net Cash Flow | \$473M | \$630.72M – \$158M | | Effective CAPEX | \$3.78B | Post-30% ITC | | Payback Formula | CAPEX ÷ Net Cash Flow | \$3.78B ÷ \$473M ≈ 8 years | #### Highlight: - Incentives shorten payback to as low as 7 years in optimized states. - Net cash flow of nearly half a billion USD per year provides strong, predictable returns. - Falls well within benchmarks for geothermal and renewable infrastructure projects. #### **FINANCIAL CONSIDERATIONS** REVENUE STABILITY: 90%+ CF ENSURES BASELOAD RELIABILITY. RISKS: HIGH UPFRONT COSTS, SEISMICITY; MITIGATED BY DOE GRANTS. COMPETITIVE LANDSCAPE: LCOE \$45-65/MWH BY DECADE'S END, COMPETITIVE WITH GAS. ### **10-YEAR RETURN CHART** | STATE/RE-
GION | RESOURCE
POTENTIAL
(GW) | AVG. PPA
PRICE
(\$/KWH) | STATE IN-
CENTIVES | ESTIMAT-
ED ANNU-
AL OUT-
PUT (FOR
1000 MW) | Land
Cost (\$/
ACRE) | Projected
ROI
(30-YEAR) | Notes | |-------------------------------|-------------------------------|-------------------------------|---------------------------|---|----------------------------|-------------------------------|--| | Nevada
(West) | High (leading
leases) | 0.07-0.09 | Tax
abatements,
RPS | 7.9-8.0 billion
kWh (95% CF) | 1,000-3,000 | 125-135% | Top resource;
low regs; 20-
30% higher
output vs. East.
EGS ideal. | | California | High (5% geo
mix) | 0.08-0.10 | CEC grants | 7.8-7.9 billion
kWh | 5,000-
10,000 | 120-130% | Higher PPAs;
regs add costs.
Strong grid
integration. | | Utah/Idaho | Moderate-High | 0.07-0.08 | Tax credits | 7.5-7.8 billion
kWh | 2,000-4,000 | 115-125% | Emerging EGS;
cheap land,
lower output. | | Oregon | Moderate | 0.07-0.09 | BETC
rebates | 7.4-7.7 billion
kWh | 3,000-5,000 | 110-120% | Hydro
competition;
seismic risks. | | Eastern
U.S. (e.g.,
WV) | Low (EGS
pilots) | 0.08-0.10 | Limited | 6.5-7.0 billion
kWh (80% CF) | 4,000-6,000 | 100-110% | 20-40%
less output;
experimental,
higher costs. | # ROI OPTIMIZATION - NEVADA CASE | FACTOR | DETAILS | |----------------------|---| | Recommended Location | Nevada | | ROI Range | 125–135% | | Drivers | High geothermal resources, low land costs, state incentives + 30% ITC | | Effective CAPEX | Reduced by ~40% with combined incentives | | Scale Option | Expand to 1.5 GW capacity → 10% cost savings | | Revenue Assumption | \$0.085/kWh | | Annual Net Revenue | ~\$670M/year | | Optimized ROI | ~130% | | | | ## GOVERNMENT INCENTIVES, GRANTS, TAX INCENTIVES - Government Incentives/Grants: DOE Geothermal Technologies Office offers grants (up to \$10M for EGS demonstrations). State examples: Nevada RPS credits; California CEC funding. Apply at energy.gov. - World Bank Incentives/Grants: Inapplicable; targets developing nations. - **Tax Incentives:** Federal ITC: 30% of costs (base 6% + adders for wage/apprenticeship) for projects starting in 2025. PTC: ~\$0.027/kWh. Bonus depreciation: 60% in 2025. State: e.g., Utah 10% credit. ## ENVIRONMENTAL BENEFITS #### Geothermal excels in the U.S.: - Low GHG Emissions: 99% less CO₂ than fossil fuels, avoiding 100-150 million tons over 30 years. - Renewable: Reservoirs last billions of years. - Minimal Land: 404 m²/GWh vs. coal's 3,642 m². - No Fuel Transport: Eliminates extraction impacts. - Low Water: Less than conventional plants. - Considerations: Induced seismicity managed via monitoring; closed-cycle systems reduce subsidence. STRATEGIC ALIGNMENT WITH U.S. GOALS SUPPORTS DOE'S ENHANCED GEOTHERMAL SHOT (90% COST REDUCTION BY 2035), IRA CLEAN ENERGY TARGETS, AND GRID RESILIENCE. GEODYN SOLUTIONS' 1000 MW U.S. GEOTHERMAL PLANT, COSTING \$5.4 BILLION WITH 20% CONTINGENCY, OFFERS 115135% ROI, 7-9 YEAR PAYBACK, AND SIGNIFICANT ENVIRONMENTAL BENEFITS. OPTIMIZED IN NEVADA, IT LEVERAGES DOMESTIC INCENTIVES TO LEAD IN CLEAN ENERGY. www.geodynsolutions.com ©Geodynsolutions 2025 - All Rights Reserved