

COMPREHENSIVE PROPOSAL FOR GEODYN SOLUTIONS:

1000 MW GEOTHERMAL POWER PLANT IN THE UNITED STATES

© 2025 Geodyn Solutions. All rights reserved.
This document is confidential and proprietary. Unauthorized use, reproduction, or distribution is prohibited without written permission from Geodyn Solutions.

As an expert consultant in renewable energy, this proposal outlines a 1000 MW enhanced geothermal system (EGS) power plant in the U.S., leveraging the nation's leadership in geothermal energy (over 4 GW installed) and vast potential (up to 5.5 TW via EGS). The U.S. market emphasizes private investment, federal tax credits, and state incentives, with no reliance on international funding. The proposal incorporates a 20% contingency fee to address risks like drilling uncertainties or regulatory delays, optimizing for high-resource Western states to maximize ROI. It aligns with U.S. net-zero emissions goals by 2050, displacing coal and gas (60% of electricity).

PROJECT BACKGROUND

U.S. geothermal resources are concentrated in Western states along tectonic boundaries, with EGS enabling broader deployment. Current capacity is ~4 GW, primarily in California and Nevada, with DOE targeting 1-2 GW additions by decade's end to meet electrification and data center demands. This 1000 MW plant will provide baseload power to grids like CAISO or WECC, enhancing energy security for 330+ million people.

FINANCIAL VIABILITY

PROJECT COST

Base cost is \$4.5 billion (~\$4.5 million/MW for EGS, per 2025 projections). A 20% contingency fee for risks like drilling or permitting brings total CAPEX to \$5.4 billion, aligning with industry standards (10-20%).

CATEGORY	DETAILS
Capital Expenditure (CAPEX)	\$5.4 billion (including 20% contingency on \$4.5 billion)
– Base Cost	\$4.5 billion (\$4.5 million/MW for 1000 MW)
Contingency Fee	\$0.9 billion (20% of base cost)
Drilling Costs	30–60% of base CAPEX (\$1.35–\$2.7 billion)
Infrastructure Costs	10–15% of base CAPEX (\$450–\$675 million)
Operation & Maintenance (O&M)	\$0.02/kWh, ~\$4.73 billion over 30 years (7.884 billion kWh/year)

- Drilling Costs: Major expense, mitigated by oil/gas tech advancements.
- Infrastructure Costs: Includes roads, grid connections.
- O&M Costs: Low at \$0.02/kWh, ~\$158 million/year at 90% capacity factor.

ROI ANALYSIS (30-YEAR PROJECTION)

PARAMETER	VALUE	NOTES
ROI (30 years)	115–135%	Optimized by location & incentives
PPA Price	\$79/MWh)*	Based on recent U.S. projects
Annual Production	7.884B kWh	90% capacity factor
Annual Revenue	\$630.72M	
Total Revenue (30 years)	\$18.92B	
Total Costs	~\$9.23B	Post-30% ITC CAPEX \$3.78B + O&M \$4.73B
Net Profit	~\$9.69B	
ROI Formula	(Net Profit / Total Costs) × 100%	≈ 115–135%

Highlight:

This projection shows strong long-term profitability, with net profits nearly doubling total costs and ROI reaching 115–135% in high-resource states where incentives and favorable PPA terms apply.

PAYBACK PERIOD

METRIC	VALUE	NOTES
Estimated Payback Pe- riod	7–9 years	National average: ~8 years; High-ROI states: ~7 years
Annual Revenue	\$630.72M	Based on 7.884B kWh × \$0.08/kWh
Annual O&M Costs	\$158M	Operations & Maintenance
Annual Net Cash Flow	\$473M	\$630.72M – \$158M
Effective CAPEX	\$3.78B	Post-30% ITC
Payback Formula	CAPEX ÷ Net Cash Flow	\$3.78B ÷ \$473M ≈ 8 years

Highlight:

- Incentives shorten payback to as low as 7 years in optimized states.
- Net cash flow of nearly half a billion USD per year provides strong, predictable returns.
- Falls well within benchmarks for geothermal and renewable infrastructure projects.

FINANCIAL CONSIDERATIONS

REVENUE STABILITY: 90%+ CF ENSURES BASELOAD RELIABILITY.
RISKS: HIGH UPFRONT COSTS, SEISMICITY; MITIGATED BY DOE GRANTS.
COMPETITIVE LANDSCAPE: LCOE \$45-65/MWH BY DECADE'S END,
COMPETITIVE WITH GAS.

10-YEAR RETURN CHART

STATE/RE- GION	RESOURCE POTENTIAL (GW)	AVG. PPA PRICE (\$/KWH)	STATE IN- CENTIVES	ESTIMAT- ED ANNU- AL OUT- PUT (FOR 1000 MW)	Land Cost (\$/ ACRE)	Projected ROI (30-YEAR)	Notes
Nevada (West)	High (leading leases)	0.07-0.09	Tax abatements, RPS	7.9-8.0 billion kWh (95% CF)	1,000-3,000	125-135%	Top resource; low regs; 20- 30% higher output vs. East. EGS ideal.
California	High (5% geo mix)	0.08-0.10	CEC grants	7.8-7.9 billion kWh	5,000- 10,000	120-130%	Higher PPAs; regs add costs. Strong grid integration.
Utah/Idaho	Moderate-High	0.07-0.08	Tax credits	7.5-7.8 billion kWh	2,000-4,000	115-125%	Emerging EGS; cheap land, lower output.
Oregon	Moderate	0.07-0.09	BETC rebates	7.4-7.7 billion kWh	3,000-5,000	110-120%	Hydro competition; seismic risks.
Eastern U.S. (e.g., WV)	Low (EGS pilots)	0.08-0.10	Limited	6.5-7.0 billion kWh (80% CF)	4,000-6,000	100-110%	20-40% less output; experimental, higher costs.

ROI OPTIMIZATION - NEVADA CASE

FACTOR	DETAILS
Recommended Location	Nevada
ROI Range	125–135%
Drivers	High geothermal resources, low land costs, state incentives + 30% ITC
Effective CAPEX	Reduced by ~40% with combined incentives
Scale Option	Expand to 1.5 GW capacity → 10% cost savings
Revenue Assumption	\$0.085/kWh
Annual Net Revenue	~\$670M/year
Optimized ROI	~130%

GOVERNMENT INCENTIVES, GRANTS, TAX INCENTIVES

- Government Incentives/Grants: DOE Geothermal Technologies Office offers grants (up to \$10M for EGS demonstrations). State examples: Nevada RPS credits; California CEC funding. Apply at energy.gov.
- World Bank Incentives/Grants: Inapplicable; targets developing nations.
- **Tax Incentives:** Federal ITC: 30% of costs (base 6% + adders for wage/apprenticeship) for projects starting in 2025. PTC: ~\$0.027/kWh. Bonus depreciation: 60% in 2025. State: e.g., Utah 10% credit.

ENVIRONMENTAL BENEFITS

Geothermal excels in the U.S.:

- Low GHG Emissions: 99% less CO₂ than fossil fuels, avoiding 100-150 million tons over 30 years.
- Renewable: Reservoirs last billions of years.
- Minimal Land: 404 m²/GWh vs. coal's 3,642 m².
- No Fuel Transport: Eliminates extraction impacts.
- Low Water: Less than conventional plants.
- Considerations: Induced seismicity managed via monitoring; closed-cycle systems reduce subsidence.

STRATEGIC ALIGNMENT WITH U.S. GOALS

SUPPORTS DOE'S ENHANCED GEOTHERMAL SHOT (90% COST REDUCTION BY 2035), IRA CLEAN ENERGY TARGETS, AND GRID RESILIENCE.

GEODYN SOLUTIONS' 1000 MW U.S. GEOTHERMAL PLANT,
COSTING \$5.4 BILLION WITH 20% CONTINGENCY, OFFERS 115135% ROI, 7-9 YEAR PAYBACK, AND SIGNIFICANT ENVIRONMENTAL
BENEFITS. OPTIMIZED IN NEVADA, IT LEVERAGES DOMESTIC
INCENTIVES TO LEAD IN CLEAN ENERGY.

www.geodynsolutions.com

©Geodynsolutions 2025 - All Rights Reserved