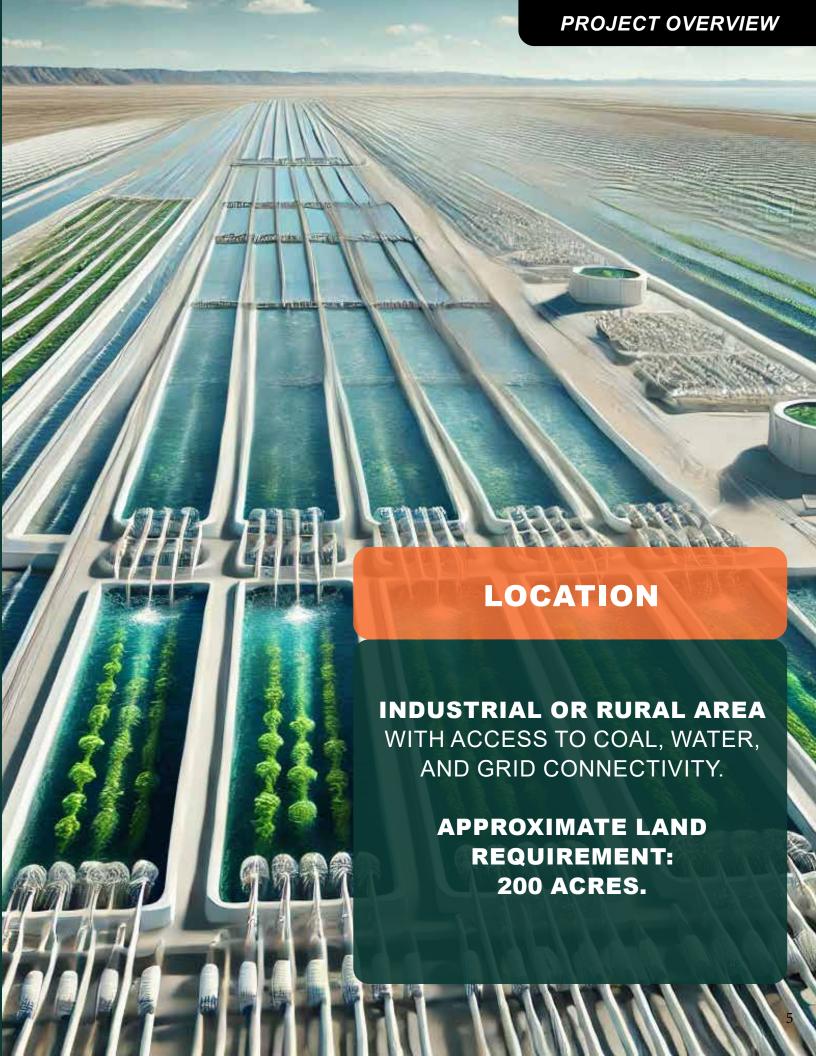


EXECUTIVE SUMMARY

This business plan outlines the construction of a 200 MWh clean coal power plant integrated with an algae pond facility and greenhouses. The project is designed to capture and utilize CO₂ emissions to cultivate algae for biofuels, biochar, and food products while using 25% of the captured CO₂ to enrich greenhouses for vegetable production. The electricity generated will be sold at \$0.17/kWh or \$0.25/kWh, depending on the market. Additional revenue will come from biochar, vegetables, algae-derived food products, and carbon credits.

This innovative project contributes to clean energy, carbon sequestration, and sustainable agriculture, achieving an attractive ROI of 38.5% (at \$0.17/kWh) to 59.5% (at \$0.25/kWh). It aligns with Zambia's National Green Growth Strategy (GGS), which promotes development pathways for a low-carbon, resource-efficient, resilient, and socially inclusive economy by 2030. Additionally, the project supports the United Nations Sustainable Development Goals (SDGs):

SDG 7: Affordable and Clean Energy.


SDG 12: Responsible Consumption and Production.

SDG 13: Climate Action. **SDG 15:** Life on Land.

GOALS AND OBJECTIVES

- Generate 200 MWh of clean electricity using advanced carbon capture technology.
- Capture 90% of CO₂ emissions and utilize them for algae cultivation and greenhouse production.
- Develop sustainable products: bio-oil, syngas, biochar, and vegetables.
- Diversify revenue through electricity sales, carbon credits, and agricultural outputs.
- Promote environmental sustainability, job creation, and food security.
- Align with Zambia's National Green Growth Strategy (GGS) and SDGs.

KEY FEATURES

CLEAN COAL POWER PLANT

- Capacity: 200 MWh.
- **Technology:** Advanced combustion with 90% carbon capture.
- **Purpose:** Generate reliable base-load electricity for Zambia's growing energy needs.

ALGAE CULTIVATION FACILITY

- Area: 75 acres of raceway ponds.
- CO2 Utilization: 75% of captured CO₂.
- Output: 400 tons/day of algae biomass.
 - □ **90% Biomass:** Pyrolyzed into bio-oil, syngas, and biochar.
 - □ **10% Biomass:** Used for food and animal feed production.

GREENHOUSES

- Area: 30 acres.
- CO₂ Utilization: 25% of captured CO₂.
- **Output:** 7,300 tons/year of high-value vegetables (e.g., tomatoes, cucumbers, leafy greens).

PYROLYSIS PLANT

- Processes algae biomass into:
 - ☐ **Bio-oil:** 50% of biomass (~200 tons/day).
 - ☐ **Syngas:** 30% of biomass (~120 tons/day).
 - ☐ **Biochar:** 20% of biomass (~80 tons/day).

POWER GENERATION

- Additional electricity from:
 - ☐ **Bio-oil turbines:** Generate 60 MWh/day.
 - Syngas turbines: Generate 20 MWh/day.
 - ORC systems: Generate 10 MWh/day from waste heat recovery.

TECHNICAL SPECIFICATIONS AND PROCESSES

CLEAN COAL POWER PLANT

- **Technology:** Advanced combustion with 90% CO₂ capture.
- **Purpose:** Provide reliable base-load electricity with minimal emissions.
- Carbon Capture: Captured CO₂ is repurposed for algae cultivation and greenhouse operations.

ALGAE POND SYSTEM

- Area: ~75 acres of raceway ponds.
- CO₂ Utilization: 75% of captured CO₂.
- Output: ~400 tons of algae biomass daily, supporting biofuel production and food security.

PYROLYSIS PROCESS

- Input: 360 tons/day of algae biomass.
- Outputs:
 - ☐ **Bio-oil:** 50% of biomass (~200 tons/day).
 - □ **Syngas:** 30% of biomass (~120 tons/day).
 - ☐ **Biochar:** 20% of biomass (~80 tons/day).

GREENHOUSES

- Area: ~30 acres.
- CO₂ Utilization: 25% of captured CO₂.
- Outputs: ~7,300 tons/year of vegetables for local markets.

POWER GENERATION UNITS

- Primary Source: 200 MWh from the clean coal plant.
- Supplementary Sources:
 - ☐ **Bio-oil turbines:** Generate 60 MWh/day.
 - ☐ Syngas turbines: Generate 20 MWh/day.
 - □ **ORC units:** Generate 10 MWh/day using waste heat recovery.

ENVIRONMENTAL BENEFITS

CO₂ SEQUESTRATION:

Prevents the release of 1 million tons of CO₂ annually. Biochar provides long-term carbon storage while improving soil health.

SUSTAINABLE OUTPUTS:

Algae absorbs 30-50 times more CO₂ than terrestrial plants. Contributes to a circular economy by transforming CO₂ into valuable products.

FOOD SECURITY:

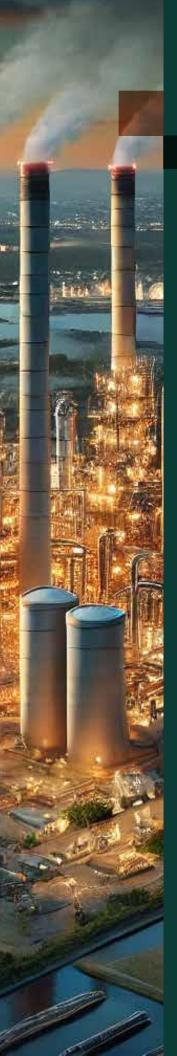
Provides 7,300 tons/year of vegetables and 14,600 tons/year of algae-based food products, addressing local food shortages.

ECONOMIC IMPACT

JOB CREATION

Construction Phase:

~3,000 direct jobs and ~6,000 indirect jobs.


Operational Phase:

~1,500 permanent jobs, including roles in power plant operations, algae farming, and greenhouse management.

ECONOMIC GROWTH

Boosts local economies through procurement of construction materials and services.

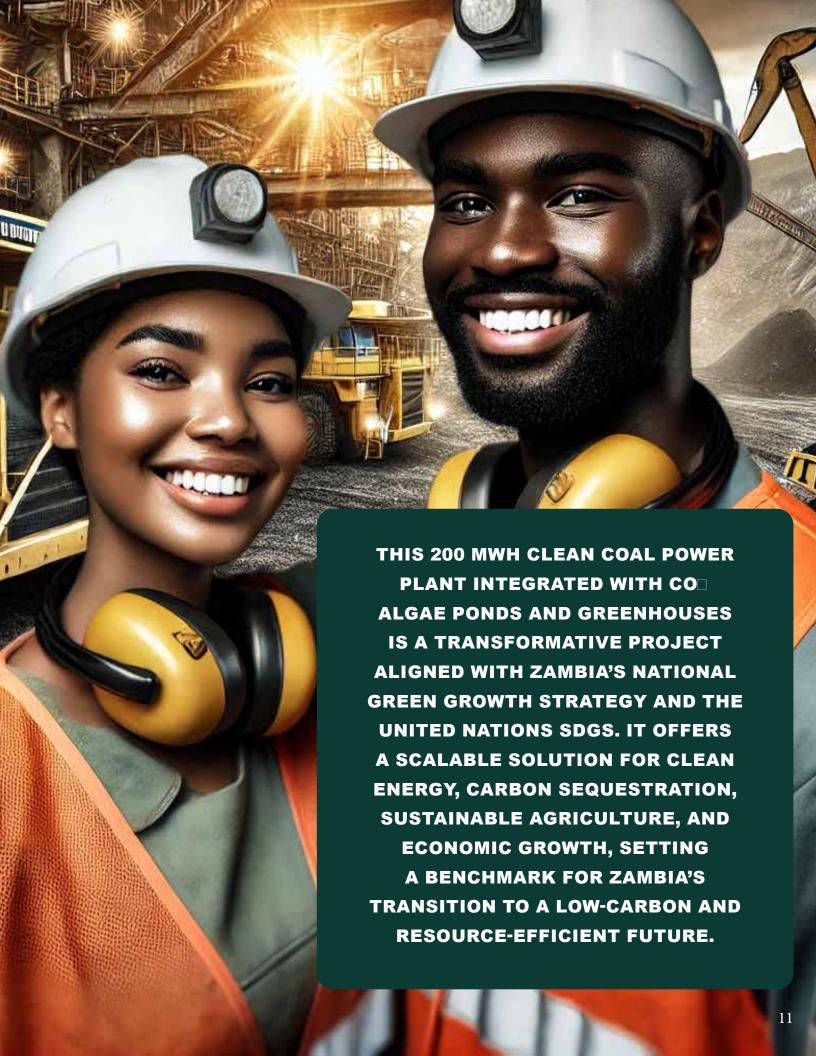
Generates significant tax revenues and reduces reliance on food imports.

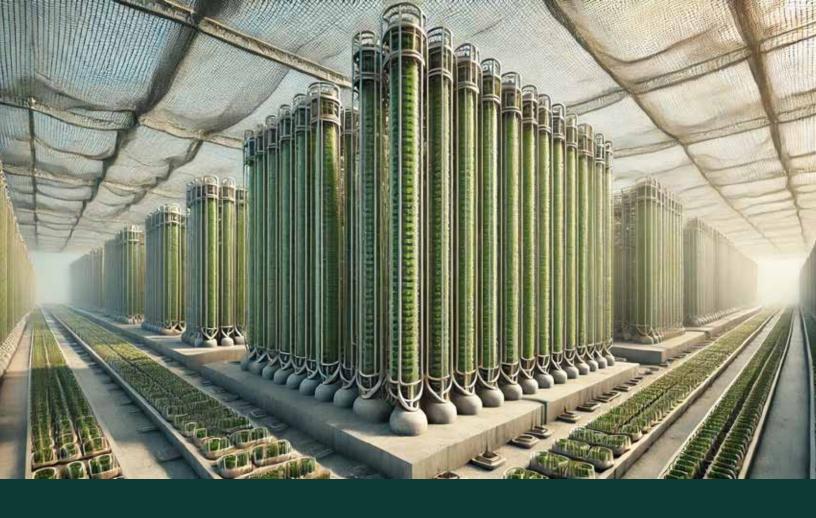
FINANCIAL PLAN

CAPITAL INVESTMENT				
Expense Item	Base Cost (USD)	Contingency (20%)	Total Cost (USD)	
Clean Coal Power Plant	\$300,000,000	\$60,000,000	\$360,000,000	
Algae Pond & Cultivation	\$100,000,000	\$20,000,000	\$120,000,000	
Pyrolysis Plant	\$80,000,000	\$16,000,000	\$96,000,000	
Greenhouse Construction	\$60,000,000	\$12,000,000	\$72,000,000	
Power Generation Systems	\$40,000,000	\$8,000,000	\$48,000,000	
CO ₂ Management Systems	\$20,000,000	\$4,000,000	\$24,000,000	
Utilities & Infrastructure	\$20,000,000	\$4,000,000	\$24,000,000	
Total Investment	\$620M	\$124M	\$744M	

REVENUE STREAMS			
Product	Annual Output	Price/Unit	Annual Revenue
Electricity	1,752,000 MWh	\$0.17-\$0.25/kWh	\$297M-\$438M
Biochar	29,200 tons/year	\$350/ton	\$10.22M
Vegetables	7,300 tons/year	\$1,000/ton	\$7.30M
Algae for Food	14,600 tons/year	\$800/ton	\$11.68M
Carbon Credits	1 million tons/year	\$10/ton	\$10.00M
Total Revenue			\$336M-\$477M

OPERATIONAL COSTS	
Expense Item	Annual Cost (USD)
Coal Supply	\$30,000,000
Labor & Maintenance	\$10,000,000
Utilities & Water	\$6,000,000
Algae Cultivation & Harvesting	\$14,000,000
Pyrolysis Operations	\$8,000,000
Greenhouse Operations	\$5,000,000
CO□ Management Costs	\$3,000,000
Total Costs	\$76M


NET PROFIT


Electricity at \$0.17/kWh: \$336M - \$76M = \$260M.
 Electricity at \$0.25/kWh: \$477M - \$76M = \$401M.

IMPLEMENTATION TIMELINE

Planning (6 Months): Feasibility studies, permitting, and funding procurement. **Construction (24-30 Months):** Build power plants, algae ponds, pyrolysis plants, and greenhouses.

Commissioning (6 Months): System integration, testing, and operational launch.

 $w\ w\ w\ .\ g\ e\ o\ d\ y\ n\ s\ o\ l\ u\ t\ i\ o\ n\ s\ .\ c\ o\ m$

©Geodynsolutions 2024 - All Rights Reserved